Regulation of effector gene expression as concerted waves in Leptosphaeria maculans : a two-players game
Résumé
ABSTRACT During infection, plant pathogenic fungi secrete a set of molecules collectively known as effectors, involved in overcoming the host immune system and in disease establishment. Effector genes are concertedly expressed as waves all along plant pathogenic fungi lifecycle. However, little is known about how coordinated expression of effector genes is regulated. Since many effector genes are located in repeat-rich regions, the role of chromatin remodeling in the regulation of effector expression was recently investigated. In Leptosphaeria maculans , causing stem canker of oilseed rape, we established that the repressive histone modification H3K9me3 (trimethylation of Lysine 9 of Histone H3), deposited by the histone methyltransferase KMT1, was involved in the regulation of expression of genes highly expressed during infection, including effectors. Nevertheless, inactivation of KMT1 did not induce expression of these genes at the same level as observed during infection of oilseed rape, suggesting that a second regulator, such as a transcription factor (TF), might be involved. Pf2, a TF belonging to the Zn2Cys6 fungal specific TF family, was described in several Dothideomycete species as essential for pathogenicity and effector gene expression. We identified the orthologue of Pf2 in L. maculans , LmPf2, and investigated the role of LmPf2 together with KMT1, by inactivating and over-expressing LmPf2 in a wild type (WT) strain and a Δkmt1 mutant. Functional analyses of the corresponding transformants highlighted an essential role of LmPf2 in the establishment of pathogenesis. Transcriptomic analyses during axenic growth showed that LmPf2 is involved in the control of effector gene expression. We observed an enhanced effect of the over-expression of LmPf2 on effector gene expression in a Δkmt1 background, suggesting an antagonist role between KMT1 and LmPf2.