Classification and Deforestation Monitoring Using Sentinel-1 C-SAR Images in a Temperate Exploited Pine Forest - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement
Communication Dans Un Congrès Année : 2023

Classification and Deforestation Monitoring Using Sentinel-1 C-SAR Images in a Temperate Exploited Pine Forest

Résumé

Earth Observation data is often used for land cover classification or change monitoring. It is rarely used for both goals in a single algorithm. The multi-change Cumulative Sum (CuSum) algorithm proposed in this study allows both classification and change monitoring in a single algorithm using Sentinel-1 C-SAR time series. The multi-change CuSum approach allowed to classify pixels belonging to the fused non-forest vegetation and bare soil classes apart from the pixels belonging to new cuts. The distinction of each class is better made using the two polarizations: VV is more accurate for detecting non-forest vegetation (Kappa coefficient of 0.62) and VH for detecting new cuts (Kappa coefficient of 0.65). The algorithm showed an accuracy up to 0.82.
Fichier non déposé

Dates et versions

hal-04099628 , version 1 (17-05-2023)

Identifiants

Citer

B. Ygorra, Frédéric Frappart, Wigneron J.-P., Christophe Moisy, B Pillot, et al.. Classification and Deforestation Monitoring Using Sentinel-1 C-SAR Images in a Temperate Exploited Pine Forest. IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium, Jul 2022, Kuala Lumpur, Malaysia. pp.691-694, ⟨10.1109/IGARSS46834.2022.9884389⟩. ⟨hal-04099628⟩
27 Consultations
0 Téléchargements

Altmetric

Partager

More