Failure without Tears: Two-Step Attachment in a Climbing Cactus - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement
Journal Articles Biomimetics Year : 2023

Failure without Tears: Two-Step Attachment in a Climbing Cactus

Abstract

Climbing plants can be extremely adaptable to diverse habitats and capable of colonising perturbed, unstructured, and even moving environments. The timing of the attachment process, whether instantaneous (e.g., a pre-formed hook) or slow (growth process), crucially depends on the environmental context and the evolutionary history of the group concerned. We observed how spines and adhesive roots develop and tested their mechanical strength in the climbing cactus Selenicereus setaceus (Cactaceae) in its natural habitat. Spines are formed on the edges of the triangular cross-section of the climbing stem and originate in soft axillary buds (areoles). Roots are formed in the inner hard core of the stem (wood cylinder) and grow via tunnelling through soft tissue, emerging from the outer skin. We measured maximal spine strength and root strength via simple tensile tests using a field measuring Instron device. Spine and root strengths differ, and this has a biological significance for the support of the stem. Our measurements indicate that the measured mean strength of a single spine could theoretically support an average force of 2.8 N. This corresponds to an equivalent stem length of 2.62 m (mass of 285 g). The measured mean strength of root could theoretically support an average of 13.71 N. This corresponds to a stem length of 12.91 m (mass of 1398 g). We introduce the notion of two-step attachment in climbing plants. In this cactus, the first step deploys hooks that attach to a substrate; this process is instantaneous and is highly adapted for moving environments. The second step involves more solid root attachment to the substrate involving slower growth processes. We discuss how initial fast hook attachment can steady the plant on supports allowing for the slower root attachment. This is likely to be important in wind-prone and moving environmental conditions. We also explore how two-step anchoring mechanisms are of interest for technical applications, particularly for soft-bodied artefacts, which must safely deploy hard and stiff materials originating from a soft compliant body.
Fichier principal
Vignette du fichier
Rowe et al 2023_ Failure without tears_ Biomimetics.pdf (6.28 Mo) Télécharger le fichier
Origin Files produced by the author(s)
Licence

Dates and versions

hal-04111275 , version 1 (31-05-2023)

Licence

Identifiers

Cite

Nick P Rowe, Lily Cheng Clavel, Patricia Soffiatti. Failure without Tears: Two-Step Attachment in a Climbing Cactus. Biomimetics, 2023, 8 (2), pp.220. ⟨10.3390/biomimetics8020220⟩. ⟨hal-04111275⟩
25 View
16 Download

Altmetric

Share

More