A skin lesion hair mask dataset with fine-grained annotations - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement Access content directly
Journal Articles (Data Paper) Data in Brief Year : 2023

A skin lesion hair mask dataset with fine-grained annotations

Abstract

Occlusion of skin lesions in dermoscopic images due to hair affects the performance of computer-assisted lesion analysis algorithms. Lesion analysis can benefit from digital hair removal or realistic hair simulation techniques. To assist in that process, we have created the largest publicly available skin lesion hair segmentation mask dataset by carefully annotating 500 dermoscopic images. Compared to the existing datasets, our dataset is free of non-hair artifacts like ruler markers, bubbles, and ink marks. The dataset is also less prone to over and under segmentations because of fine-grained annotations and quality checks from multiple independent annotators. To create the dataset, first, we collected five hundred copyright-free CC0 licensed dermoscopic images covering different hair patterns. Second, we trained a deep learning hair segmentation model on a publicly available weakly annotated dataset. Third, we extracted hair masks for the selected five hundred images using the segmentation model. Finally, we manually corrected all the segmentation errors and verified the annotations by superimposing the annotated masks on top of the dermoscopic images. Multiple annotators were involved in the annotation and verification process to make the annotations as error-free as possible. The prepared dataset will be useful for benchmarking and training hair segmentation algorithms as well as creating realistic hair augmentation systems.
Fichier principal
Vignette du fichier
1-s2.0-S2352340923003682-main.pdf (1.12 Mo) Télécharger le fichier
Origin : Files produced by the author(s)
Licence : CC BY - Attribution

Dates and versions

hal-04123084 , version 1 (09-06-2023)

Licence

Attribution

Identifiers

Cite

Sk Imran Hossain, Sudipta Singha Roy, Jocelyn de Goër de Herve, Robert E Mercer, Engelbert Mephu Nguifo. A skin lesion hair mask dataset with fine-grained annotations. Data in Brief, 2023, 48, pp.109249. ⟨10.1016/j.dib.2023.109249⟩. ⟨hal-04123084⟩
39 View
18 Download

Altmetric

Share

Gmail Facebook X LinkedIn More