Validation of the DART Model for Airborne Laser Scanner Simulations on Complex Forest Environments - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement Accéder directement au contenu
Article Dans Une Revue IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing Année : 2023

Validation of the DART Model for Airborne Laser Scanner Simulations on Complex Forest Environments

Josiane Costeraste
  • Fonction : Auteur
Marie-José Lefèvre-Fonollosa

Résumé

With the recent progresses in lidar technology for Earth remote sensing, the development of a reliable lidar simulator is becoming central in order to define specifications for new sensors, perform intercomparisons, train machine learning algorithms, and help transferring information from one scale to another. The discrete anisotropic radiative transfer (DART) model includes such a lidar simulator. Although already tested on several virtual scenes, the DART outputs still need to be rigorously evaluated against actual sensor acquisitions, especially on real complex scenes of various forest types, such as dense tropical forests. That is the purpose of the present study. A real airborne laser scanner (ALS) with full-waveform capacity was first radiometrically calibrated on targets of measured reflectance. The properties of the ALS system were then introduced in the DART model, along with a 3-D virtual scene built from terrestrial laser scans and spectroscopic measurements acquired on a forest plot near the calibration site. Finally, an ALS acquisition was simulated and the shape and magnitude of the waveforms were compared with real acquisitions. The comparison between measured and simulated data was performed at different scales by aggregating waveform samples into a 3-D grid with a vertical resolution of 1 m and a horizontal resolution ranging from 2 to 80 m. Results showed a high similarity between simulated and measured waveforms at all scales with R 2 >0.9 and NRMSE<10%. These promising results open up numerous perspectives for improved spaceborne and airborne lidar data processing and for the development of new systems
Fichier principal
Vignette du fichier
de_boissieu_etal_IEEE_J_Selected_Topics_in_Applied_Earth_Observations_Remote_Sensing_2023.pdf (7.17 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Licence : CC BY - Paternité

Dates et versions

hal-04213303 , version 1 (21-09-2023)

Identifiants

Citer

Florian de Boissieu, Florence Heuschmidt, Nicolas Lauret, Dav Ebengo, Grégoire Vincent, et al.. Validation of the DART Model for Airborne Laser Scanner Simulations on Complex Forest Environments. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16, pp.8379-8394. ⟨10.1109/JSTARS.2023.3302030⟩. ⟨hal-04213303⟩
132 Consultations
24 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More