Modeling Denitrification: Can We Report What We Don't Know? - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement
Article Dans Une Revue AGU Advances Année : 2023

Modeling Denitrification: Can We Report What We Don't Know?

B. Grosz
R. Dechow
E. Diamantopoulos
P. Dörsch
C V Henri
D. Hui
M. Kuhnert
D. Sihi
R. Well

Résumé

Biogeochemical models simulate soil nitrogen (N) turnover and are often used to assess N losses through denitrification. Though models simulate a complete N budget, often only a subset of N pools/fluxes (i.e., N 2 O, , NH 3 , NO x ) are published since the full budget cannot be validated with measured data. Field studies rarely include full N balances, especially N 2 fluxes, which are difficult to quantify. Limiting publication of modeling results based on available field data represents a missed opportunity to improve the understanding of modeled processes. We propose that the modeler community support publication of all simulated N pools and processes in future studies.
Fichier principal
Vignette du fichier
AGU Advances - 2023 - Grosz - Modeling Denitrification Can We Report What We Don t Know.pdf (306.61 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Licence

Dates et versions

hal-04327127 , version 1 (06-12-2023)

Licence

Identifiants

Citer

B. Grosz, A. Matson, K. Butterbach-Bahl, T. Clough, E A Davidson, et al.. Modeling Denitrification: Can We Report What We Don't Know?. AGU Advances, 2023, 4 (6), ⟨10.1029/2023AV000990⟩. ⟨hal-04327127⟩
25 Consultations
19 Téléchargements

Altmetric

Partager

More