A novel approach combining thermosiphon and phase change materials (PCM) for cold energy storage in cooling systems - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement Accéder directement au contenu
Article Dans Une Revue International Journal of Refrigeration Année : 2023

A novel approach combining thermosiphon and phase change materials (PCM) for cold energy storage in cooling systems

Une nouvelle approche combinant thermosiphon et matériau à changement de phase (MCP) pour le stockage de froid dans les systèmes de réfrigération

Résumé

A novel approach combining thermal energy storage (TES) and a thermosiphon was investigated for cold storage. The use of TES units for cooling systems has been studied for many years, as they are well suited for short-term energy storage. A cold latent heat accumulator was designed to replace the function of any vapour compression cycle in the event of electrical failure without using any electrical device but rather the thermosiphon principle. A laboratory prototype of a thermosiphon combined with the cold accumulator was developed using a paraffin mixture as a phase change material (PCM). The accumulator was connected to the vapour compression system of a closed display cabinet. An experimental study was carried out by simulating 1.5-hour compressor shutdowns with and without the accumulator. The air and product temperatures in the cabinet, the behaviour of the compressor during restart, and the charging and discharging processes of the accumulator were analysed. The results showed that shutting down the compressor with the cold accumulator significantly reduces the increase of air and product temperatures compared to shutting down without the accumulator. The air temperature in the rear duct was maintained within the acceptable temperature range for 72 minutes with the accumulator, compared to 3 minutes without. A default in the design of the accumulator was observed during the charging phase, as some areas of the accumulator never reached 80 % of charge. This new approach extends demand-side management and renewable energies to all end users of vapour compression machines.
Fichier sous embargo
Fichier sous embargo
0 1 14
Année Mois Jours
Avant la publication
mercredi 12 juin 2024
Fichier sous embargo
mercredi 12 juin 2024
Connectez-vous pour demander l'accès au fichier

Dates et versions

hal-04346393 , version 1 (15-12-2023)

Identifiants

Citer

Maria Aurely Yedmel, Romuald Hunlede, Stéphanie O.L. Lacour, Graciela Alvarez, Anthony Delahaye, et al.. A novel approach combining thermosiphon and phase change materials (PCM) for cold energy storage in cooling systems. International Journal of Refrigeration, In press, ⟨10.1016/j.ijrefrig.2023.12.015⟩. ⟨hal-04346393⟩
48 Consultations
5 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More