Temporal variability and cell mechanics control robustness in mammalian embryogenesis
Résumé
How living systems achieve precision in form and function despite their intrinsic stochasticity is a fundamental yet open question in biology. Here, we establish a quantitative morphomap of pre-implantation embryogenesis in mouse, rabbit and monkey embryos, which reveals that although blastomere divisions desynchronise passively without compensation, 8-cell embryos still display robust 3D structure. Using topological analysis and genetic perturbations in mouse, we show that embryos progressively change their cellular connectivity to a preferred topology, which can be predicted by a simple physical model where noise and actomyosin-driven compaction facilitate topological transitions lowering surface energy. This favours the most compact embryo packing at the 8- and 16-cell stage, thus promoting higher number of inner cells. Impairing mitotic desynchronisation reduces embryo packing compactness and generates significantly more cell mis-allocation and a lower proportion of inner-cell-mass-fated cells, suggesting that stochasticity in division timing contributes to achieving robust patterning and morphogenesis.
Domaines
Biologie du développementOrigine | Fichiers produits par l'(les) auteur(s) |
---|