Skin-to-blood pH shift triggers metabolome and proteome global remodelling in Staphylococcus epidermidis - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement Accéder directement au contenu
Article Dans Une Revue Frontiers in Microbiology Année : 2022

Skin-to-blood pH shift triggers metabolome and proteome global remodelling in Staphylococcus epidermidis

Résumé

Staphylococcus epidermidis is one of the most common bacteria of the human skin microbiota. Despite its role as a commensal, S. epidermidis has emerged as an opportunistic pathogen, associated with 80% of medical devices related infections. Moreover, these bacteria are extremely difficult to treat due to their ability to form biofilms and accumulate resistance to almost all classes of antimicrobials. Thus new preventive and therapeutic strategies are urgently needed. However, the molecular mechanisms associated with S. epidermidis colonisation and disease are still poorly understood. A deeper understanding of the metabolic and cellular processes associated with response to environmental factors characteristic of SE ecological niches in health and disease might provide new clues on colonisation and disease processes. Here we studied the impact of pH conditions, mimicking the skin pH (5.5) and blood pH (7.4), in a S. epidermidis commensal strain by means of next-generation proteomics and 1H NMR-based metabolomics. Moreover, we evaluated the metabolic changes occurring during a sudden pH change, simulating the skin barrier break produced by a catheter. We found that exposure of S. epidermidis to skin pH induced oxidative phosphorylation and biosynthesis of peptidoglycan, lipoteichoic acids and betaine. In contrast, at blood pH, the bacterial assimilation of monosaccharides and its oxidation by glycolysis and fermentation was promoted. Additionally, several proteins related to virulence and immune evasion, namely extracellular proteases and membrane iron transporters were more abundant at blood pH. In the situation of an abrupt skin-to-blood pH shift we observed the decrease in the osmolyte betaine and changes in the levels of several metabolites and proteins involved in cellular redoxl homeostasis. Our results suggest that at the skin pH S. epidermidis cells are metabolically more active and adhesion is promoted, while at blood pH, metabolism is tuned down and cells have a more virulent profile. pH increase during commensal-to-pathogen conversion appears to be a critical environmental signal to the remodelling of the S. epidermidis metabolism toward a more pathogenic state. Targeting S. epidermidis proteins induced by pH 7.4 and promoting the acidification of the medical device surface or surrounding environment might be new strategies to treat and prevent S. epidermidis infections.
Fichier principal
Vignette du fichier
Gonçalves LG 2022_Frontiers_fmicb-13-1000737.pdf (3.02 Mo) Télécharger le fichier
Origine : Publication financée par une institution
Licence : CC BY - Paternité

Dates et versions

hal-04459972 , version 1 (15-02-2024)

Licence

Paternité

Identifiants

Citer

Luis Gafeira Gonçalves, Susana Santos, Laidson Paes Gomes, Jean Armengaud, Maria Miragaia, et al.. Skin-to-blood pH shift triggers metabolome and proteome global remodelling in Staphylococcus epidermidis. Frontiers in Microbiology, 2022, 13, pp.1000737. ⟨10.3389/fmicb.2022.1000737⟩. ⟨hal-04459972⟩
3 Consultations
1 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More