Global Soil Salinity Estimation at 10 m Using Multi-Source Remote Sensing - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement
Article Dans Une Revue Canadian Journal of Remote Sensing Année : 2024

Global Soil Salinity Estimation at 10 m Using Multi-Source Remote Sensing

Résumé

Salinization is a threat to global agricultural and soil resource allocation. Current investigations of global soil salinity are limited to coarse spatial resolution of the available datasets (>250 m) and semiqualitative classification rules (five ranks). Based on these two limitations, we proposed a framework to quantitatively estimate global soil salt content in five climate regions at 10 m by integrating Sentinel-1/2 remotely sensed images, climate, parent material, terrain data, and machine learning. In hyper-arid and arid region, models established using Sentinel-2 and other geospatial data showed the highest accuracy with R 2 of 0.85 and 0.62, respectively. In semi-arid, dry sub-humid, and humid regions, models performed best using Sentinel-1, Sentinel-2, and other geospatial data with R 2 of 0.87, 0.80, and 0.87, respectively. The accuracy of the global models is considerable with field validation in Iran and Xinjiang, and compared with digitized salinity maps in California, Brazil, Turkey, South Africa, and Shandong. The proportion of extremely saline soils in Europe is 10.21%, followed by South America (5.91%), Oceania (5.80%), North America (4.05%), Asia (1.19%), and Africa (1.11%). Climatic conditions, groundwater, and salinity index are key covariates in global soil salinity estimation. Use of radar data improves estimation accuracy in wet regions. The map of global soil salinity at 10 m provides a detailed, high-precision basis for soil property investigation and resource management.
Fichier principal
Vignette du fichier
2024-Wang.pdf (33.19 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Licence

Dates et versions

hal-04615121 , version 1 (18-06-2024)

Licence

Identifiants

Citer

Nan Wang, Songchao Chen, Jingyi Huang, Frédéric Frappart, Ruhollah Taghizadeh, et al.. Global Soil Salinity Estimation at 10 m Using Multi-Source Remote Sensing. Canadian Journal of Remote Sensing, 2024, 4, ⟨10.34133/remotesensing.0130⟩. ⟨hal-04615121⟩
13 Consultations
0 Téléchargements

Altmetric

Partager

More