Article Dans Une Revue Plant Physiology Année : 2024

Stomatal CO2 responses at sub- and above-ambient CO2 levels employ different pathways in Arabidopsis

Kaspar Koolmeister
Ebe Merilo
Hanna Hõrak

Résumé

Abstract Stomatal pores that control plant CO2 uptake and water loss affect global carbon and water cycles. In the era of increasing atmospheric CO2 levels and vapor pressure deficit (VPD), it is essential to understand how these stimuli affect stomatal behavior. Whether stomatal responses to sub-ambient and above-ambient CO2 levels are governed by the same regulators and depend on VPD remains unknown. We studied stomatal conductance responses in Arabidopsis (Arabidopsis thaliana) stomatal signaling mutants under conditions where CO2 levels were either increased from sub-ambient to ambient (400 ppm) or from ambient to above-ambient levels under normal or elevated VPD. We found that guard cell signaling components involved in CO2-induced stomatal closure have different roles in the sub-ambient and above-ambient CO2 levels. The CO2-specific regulators prominently affected sub-ambient CO2 responses, whereas the lack of guard cell slow-type anion channel SLOW ANION CHANNEL-ASSOCIATED 1 (SLAC1) more strongly affected the speed of above-ambient CO2-induced stomatal closure. Elevated VPD caused lower stomatal conductance in all studied genotypes and CO2 transitions, as well as faster CO2-responsiveness in some studied genotypes and CO2 transitions. Our results highlight the importance of experimental setups in interpreting stomatal CO2-responsiveness, as stomatal movements under different CO2 concentration ranges are controlled by distinct mechanisms. Elevated CO2 and VPD responses may also interact. Hence, multi-factor treatments are needed to understand how plants integrate different environmental signals and translate them into stomatal responses.
Fichier principal
Vignette du fichier
2024_Koolmeister_Plant_Physiol.pdf (714.54 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Licence

Dates et versions

hal-04666020 , version 1 (01-08-2024)

Licence

Identifiants

Citer

Kaspar Koolmeister, Ebe Merilo, Hanna Hõrak, Hannes Kollist. Stomatal CO2 responses at sub- and above-ambient CO2 levels employ different pathways in Arabidopsis. Plant Physiology, 2024, ⟨10.1093/plphys/kiae320⟩. ⟨hal-04666020⟩
44 Consultations
10 Téléchargements

Altmetric

Partager

More