Biofilms inactivate the free-living stage of Batrachochytrium dendrobatidis, the most destructive pathogen for vertebrate diversity
Résumé
Emerging infectious diseases threaten biodiversity and human health. Many emerging pathogens have aquatic life stages and all immersed substrates have biofilms on their surface, i.e., communities of microorganisms producing a gelatinous matrix. However, the outcome of the interactions between environmental biofilms and pathogens is poorly understood. Here we demonstrate that biofilms reduce the survival of the most impactful pathogen for vertebrate diversity, the invasive chytrid fungus Batrachochytrium dendrobatidis. Effects on its zoospores varied with biofilm composition in controlled settings and biofilm compositional variation also coincided with divergent impacts of chytridiomycosis on amphibian populations in nature. Our results suggest that biofilms form a biotic component of ecosystem resistance to Batrachochytrium dendrobatidis by reducing environmental transmission, and that they could be used to develop nature-based technologies to limit the impacts and spread of this invasive chytrid fungus. Our study warrants further research into the interactions between environmental biofilms and pathogenic and/or invasive micro-organisms.
Graphical Abstract: https://academic.oup.com/view-large/figure/483442354/wrae189ga1.tif