Mechanical vulnerability of beech (Fagus sylvatica L.) poles after thinning: Securing stem or roots is risk dependent
Résumé
In this study, we analysed how the tree growth in stem and roots reacts to thinning, focusing on the consequences for mechanical stability of the root-soil plate quantified by field mechanical bending tests. In order to disentangle the role of the biomechanical control of growth (thigmomorphogenesis) from other factors, half of the studied trees were guyed to remove mechanical stimulation due to the wind of living cells. Surprisingly, our results show a decrease in the root-soil plate mechanical performances for a given stem biomass after thinning. This decrease was however explained by boosted biomass allocation to the stem at the expense of the root system. Further, relationship between the initial stiffness and the strength (overturning moment) of the root-soil plate was modified by thinning. It is suggested that at this development stage (poles), as stem break is the weakest point of tree resistance to wind loads, the biomechanical control of growth strengthens preferentially the stem and not the anchorage. Further developments should study the diversity of behaviours between development stages and between species for a unified theory on the role of the thigmomorphogenetic syndrome in tree resistance to wind risk, with synergies and trade-offs with other processes and functions.
Domaines
Sciences de l'environnementOrigine | Fichiers éditeurs autorisés sur une archive ouverte |
---|---|
Licence |