On the convergence of a non-linear ensemble Kalman smoother - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement Access content directly
Journal Articles Applied Numerical Mathematics Year : 2019

On the convergence of a non-linear ensemble Kalman smoother

Abstract

Ensemble methods, such as the ensemble Kalman filter (EnKF), the local ensemble transform Kalman filter (LETKF), and the ensemble Kalman smoother (EnKS) are widely used in sequential data assimilation, where state vectors are of huge dimension. Little is known, however, about the asymptotic behavior of ensemble methods. In this paper, we prove convergence in L-P of ensemble Kalman smoother to the Kalman smoother in the large-ensemble limit, as well as the convergence of EnKS-4DVAR, which is a Levenberg-Marquardt-like algorithm with EnKS as the linear solver, to the classical Levenberg-Marquardt algorithm in which the linearized problem is solved exactly.

Dates and versions

hal-02618742 , version 1 (25-05-2020)

Identifiers

Cite

El Houcine Bergou, Serge Gratton, Jan Mandel. On the convergence of a non-linear ensemble Kalman smoother. Applied Numerical Mathematics, 2019, 137, pp.151-168. ⟨10.1016/j.apnum.2018.11.008⟩. ⟨hal-02618742⟩
63 View
0 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More