Sequence diversity of five Medicago sativa genes involved in agronomic traits to set up allele mining in breeding
Résumé
Lucerne (Medicago sativa) is an autotetraploid forage legume, whose breeding mainly relies on phenotypic recurrent selection to create synthetic populations. Allele mining could be a strategy to take advantage of the large genetic diversity of the species. This paper reports the polymorphism of five genes impacting the phenotype for selected traits: CAD1 and CCoaOMT (digestibility), CONSTANS-like (forage yield), NHX1 (salt tolerance), and WXP1 (drought tolerance). Complete genes were sequenced for 387 genotypes of 43 cultivated accessions and 20 genotypes of wild accessions. Wild versus cultivated polymorphism were compared, adaptive evolution was evaluated by comparing M. sativa and Medicago truncatula sequences and variants of the cultivated pool were characterized. We showed that the wild pool was more variable than the cultivated pool, with 36.6% and 8.4% of the variants that were specific to the wild pool and the cultivated pool, respectively. This result confirmed a bottleneck effect during domestication and selection. We also found that CAD1, CCoaOMT, and NHX1 were under a strong purifying selection and contained few non-synonymous variants (8, 5, and 8, respectively), while CONSTANS-like and WXP1 were under a less pronounced purifying selection and were more polymorphic (45 and 91 non-synonymous variants, respectively). This result suggests that adaptive evolution could be an indicator of expected polymorphism. The application of allele mining strategy for plant breeding in autotetraploid species is discussed.