Effect of incubation temperature and pH on the recovery of Bacillus weihenstephanensis spores after exposure to a peracetic acid-based disinfectant or to pulsed light
Résumé
The recovery at a range of incubation temperatures and pH of spores of Bacillus weihenstephanensis KBAB4 exposed to a peracetic acid-based disinfectant (PABD) or to pulsed light was estimated. Spores of B. weihenstephanensis were produced at 30 °C and pH 7.00, at 30 °C and pH 5.50, or at 12 °C and pH 7.00. The spores were treated with a commercial peracetic acid-based disinfectant at 80 mg·mL−1 for 0 to 200 min at 18 °C or by pulsed light at fluences ranging between 0.4 and 2.3 J·cm−2 for pulsed light treatment. After each treatment, the spores were incubated on nutrient agar at 12 °C, 30 °C or 37 °C, or at pH 5.10, 6.00 or 7.40. Incubation temperature during recovery had a significant impact only near the recovery limits, beyond which surviving spores previously exposed to a PABD or to pulsed light were not able to form colonies. In contrast, a decrease in pH of the recovery nutrient agar had a progressive impact on the ability of spores to form colonies. The time to first log reduction after PABD treatment was 29.5 ± 0.7 min with recovery at pH 7.40, and was tremendously shortened 5.1 ± 0.2 min with recovery at pH 5.10. Concerning the fluence necessary for the first log reduction, it was 1.5 times higher when the spores were recovered at pH 6.00 compared to a recovery at pH 5.10. The impact of recovery temperature and pH can be described with a mathematical model using cardinal temperature and pH asparameters. These effects of temperature and pH on recovery of Bacillus weihenstephanensis spores exposed to a disinfectant combining peracetic acid and hydrogen peroxide, or pulsed light are similar, although these treatments are of different natures. Sporulation temperature or pH did not impact resistance to the peracetic acid-based disinfectant or pulsed light.