Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Learning the optimal scale for GWAS through hierarchical SNP aggregation

Abstract : BackgroundGenome-Wide Association Studies (GWAS) seek to identify causal genomic variants associated with rare human diseases. The classical statistical approach for detecting these variants is based on univariate hypothesis testing, with healthy individuals being tested against affected individuals at each locus. Given that an individual's genotype is characterized by up to one million SNPs, this approach lacks precision, since it may yield a large number of false positives that can lead to erroneous conclusions about genetic associations with the disease. One way to improve the detection of true genetic associations is to reduce the number of hypotheses to be tested by grouping SNPs.ResultsWe propose a dimension-reduction approach which can be applied in the context of GWAS by making use of the haplotype structure of the human genome. We compare our method with standard univariate and group-based approaches on both synthetic and real GWAS data.ConclusionWe show that reducing the dimension of the predictor matrix by aggregating SNPs gives a greater precision in the detection of associations between the phenotype and genomic regions.
Type de document :
Article dans une revue
Liste complète des métadonnées

Littérature citée [39 références]  Voir  Masquer  Télécharger
Déposant : Migration Prodinra <>
Soumis le : mardi 26 mai 2020 - 08:16:37
Dernière modification le : vendredi 5 février 2021 - 16:12:04


2018_Guinot_BMC Bioinformatics...
Fichiers éditeurs autorisés sur une archive ouverte


Distributed under a Creative Commons Paternité 4.0 International License



Florent Guinot, Marie Szafranski, Christophe Ambroise, Franck Samson. Learning the optimal scale for GWAS through hierarchical SNP aggregation. BMC Bioinformatics, BioMed Central, 2018, 19, ⟨10.1186/s12859-018-2475-9⟩. ⟨hal-02623460⟩



Consultations de la notice


Téléchargements de fichiers