Learning the optimal scale for GWAS through hierarchical SNP aggregation - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement Accéder directement au contenu
Article Dans Une Revue BMC Bioinformatics Année : 2018

Learning the optimal scale for GWAS through hierarchical SNP aggregation

Résumé

Background Genome-Wide Association Studies (GWAS) seek to identify causal genomic variants associated with rare human diseases. The classical statistical approach for detecting these variants is based on univariate hypothesis testing, with healthy individuals being tested against affected individuals at each locus. Given that an individual's genotype is characterized by up to one million SNPs, this approach lacks precision, since it may yield a large number of false positives that can lead to erroneous conclusions about genetic associations with the disease. One way to improve the detection of true genetic associations is to reduce the number of hypotheses to be tested by grouping SNPs.ResultsWe propose a dimension-reduction approach which can be applied in the context of GWAS by making use of the haplotype structure of the human genome. We compare our method with standard univariate and group-based approaches on both synthetic and real GWAS data.ConclusionWe show that reducing the dimension of the predictor matrix by aggregating SNPs gives a greater precision in the detection of associations between the phenotype and genomic regions.
Fichier principal
Vignette du fichier
2018_Guinot_BMC Bioinformatics_1.pdf (2.04 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-02623460 , version 1 (26-05-2020)

Licence

Paternité

Identifiants

Citer

Florent Guinot, Marie Szafranski, Christophe Ambroise, Franck Samson. Learning the optimal scale for GWAS through hierarchical SNP aggregation. BMC Bioinformatics, 2018, 19, ⟨10.1186/s12859-018-2475-9⟩. ⟨hal-02623460⟩

Relations

63 Consultations
32 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More