Increasing the benefits of species diversity in multispecies temporary grasslands by increasing within-species diversity
Abstract
Background and Aims The positive effects of species diversity on the functioning and production of ecosystems have been discussed widely in the literature. In agriculture, these effects are increasingly being applied to mixed-species crops and particularly to temporary grasslands. However, the effects of increases in genetic diversity (i.e. within-species diversity) on productivity in multispecies crops have not been much studied. Nevertheless, genetic diversity may have strong positive effects on agricultural ecosystems and positively influence production and species abundances in multispecies covers. We examine here the effects of genetic diversity on temporary multispecies grasslands. Methods From a real situation, a breeder’s field trial, we describe a study with five seed mixtures, each containing seven species (three grasses and four legumes) but with three different levels of genetic diversity (low, medium and high) created by using different numbers of cultivars per species. From the perspective of a plant breeder, we analyse measurements of biomass production over a 5-year period. Key Results We show a positive effect of genetic diversity on production, on production stability and on the equilibrium of species abundances in the mixtures over the 5-year period of the experiment. The legume/grass proportions were best balanced, having the highest within-species diversity. Conclusions For the first time in a field-plot study, we demonstrate the major role played by within-species genetic diversity on the production, stability and species composition of temporary grasslands. Our key results seem to find their explanation in terms of shifts in the peaks of species biomass production during the season, these shifts likely leading to temporal species complementarity. Our study suggests major benefits will arise with increases in the genetic diversity of multispecies crops. Genetic diversity may be useful in helping to meet new crop-diversification challenges, particularly with multispecies grasslands. Genetic and species diversity will likely provide additional levers for improving crops in diversified systems.
Origin | Publisher files allowed on an open archive |
---|