Multi-model ensembles improve predictions of crop-environment-management interactions
Daniel Wallach
(1)
,
Pierre Martre
(2)
,
Bo Liu
(3, 4)
,
Senthold Asseng
(4)
,
Frank Ewert
(5, 6)
,
P.J. Thorburn
(7)
,
Martin K. van Ittersum
(8)
,
Pramod K. Aggarwal
(9)
,
Melika Ben Ahmed
(10, 11)
,
Bruno Basso
(12)
,
Christian Biernath
(13)
,
Davide Cammarano
(14)
,
Andrew J. Challinor
(15, 16)
,
Giacomo de Sanctis
(17)
,
Benjamin Dumont
(18)
,
Ehsan Eyshi Rezaei
(5, 19)
,
Elias Fereres
(20)
,
Gerry J Fitzgerald
(21, 22)
,
Yimin Gao
(4)
,
Margarita Garcia-Vila
(20)
,
Sebastian Gayler
(23)
,
Christine Girousse
(24)
,
Gerrit Hoogenboom
(25)
,
Heidi Horan
(7)
,
Roberto C. Izaurralde
(26, 27)
,
Corbin D. Jones
(27)
,
Belay T. Kassie
(4)
,
Kurt Christian Kersebaum
(28)
,
C. Klein
(13)
,
Ann-Kristin Koehler
(29)
,
Andrea Maiorano
(2, 30)
,
Sara Minoli
(31)
,
Christoph Müller
(31)
,
Soora Kumar Naresh
(32)
,
Claas Nendel
(28)
,
Garry J. O'Leary
(33)
,
Taru Palosuo
(34)
,
Eckart Priesack
(13)
,
Dominique Ripoche
(35)
,
Reimund Paul Rötter
(36)
,
Mikhail A. Semenov
(37)
,
Claudio O. Stöckle
(10)
,
Pierre Stratonovitch
(37)
,
Thilo Streck
(23)
,
Iwan Supit
(38)
,
Fulu Tao
(39)
,
Joost Wolf
(40)
,
Ze Zhang
(41)
1
AGIR -
AGroécologie, Innovations, teRritoires
2 LEPSE - Écophysiologie des Plantes sous Stress environnementaux
3 NAU - Nanjing Agricultural University
4 UF|ABE - Department of Agricultural and Biological Engineering [Gainesville]
5 INRES - Institute of Crop Science and Resource Conservation [Bonn]
6 ZALF - Leibniz-Zentrum für Agrarlandschaftsforschung = Leibniz Centre for Agricultural Landscape Research
7 CSIRO - Commonwealth Scientific and Industrial Research Organisation [Australia]
8 Plant Production Systems Group
9 CCAFS - Agriculture and Food Security
10 Biological Systems Engineering
11 Department of Agronomy
12 Department of Earth and Environmental Sciences [East Lansing]
13 Plant Pathology
14 The James Hutton Institute
15 University of Leeds
16 CGIAR - Consultative Group on International Agricultural Research
17 GMO Unit
18 Department Terra & AgroBioChem, Gembloux Agro‐Bio Tech
19 Center for Development Research
20 Universidad de Córdoba = University of Córdoba [Córdoba]
21 Agriculture Victoria Research
22 University of Melbourne
23 Institute of Soil Science and Land Evaluation
24 GDEC - Génétique Diversité et Ecophysiologie des Céréales
25 UF - University of Florida [Gainesville]
26 Department of Geographical Sciences
27 Texas A and M AgriLife Research
28 Institute of landscape systems analysis
29 SEE - School of Earth and Environment [Leeds]
30 EFSA - European Food Safety Authority
31 PIK - Potsdam Institute for Climate Impact Research
32 CESCRA - Centre for Environment Science and Climate Resilient Agriculture
33 DEDJTR - Department of Economic Development, Jobs, Transport and Resources
34 LUKE - Natural Resources Institute Finland
35 AGROCLIM - Agroclim
36 UMG - University Medical Center Göttingen
37 Computational and Systems Biology Department
38 Water & Food and Water Systems & Global Change Group
39 IGSNRR - Institute of geographical sciences and natural resources research [CAS]
40 Plant Production Systems
41 State Key Laboratory of Earth Surface Processes and Resource Ecology
2 LEPSE - Écophysiologie des Plantes sous Stress environnementaux
3 NAU - Nanjing Agricultural University
4 UF|ABE - Department of Agricultural and Biological Engineering [Gainesville]
5 INRES - Institute of Crop Science and Resource Conservation [Bonn]
6 ZALF - Leibniz-Zentrum für Agrarlandschaftsforschung = Leibniz Centre for Agricultural Landscape Research
7 CSIRO - Commonwealth Scientific and Industrial Research Organisation [Australia]
8 Plant Production Systems Group
9 CCAFS - Agriculture and Food Security
10 Biological Systems Engineering
11 Department of Agronomy
12 Department of Earth and Environmental Sciences [East Lansing]
13 Plant Pathology
14 The James Hutton Institute
15 University of Leeds
16 CGIAR - Consultative Group on International Agricultural Research
17 GMO Unit
18 Department Terra & AgroBioChem, Gembloux Agro‐Bio Tech
19 Center for Development Research
20 Universidad de Córdoba = University of Córdoba [Córdoba]
21 Agriculture Victoria Research
22 University of Melbourne
23 Institute of Soil Science and Land Evaluation
24 GDEC - Génétique Diversité et Ecophysiologie des Céréales
25 UF - University of Florida [Gainesville]
26 Department of Geographical Sciences
27 Texas A and M AgriLife Research
28 Institute of landscape systems analysis
29 SEE - School of Earth and Environment [Leeds]
30 EFSA - European Food Safety Authority
31 PIK - Potsdam Institute for Climate Impact Research
32 CESCRA - Centre for Environment Science and Climate Resilient Agriculture
33 DEDJTR - Department of Economic Development, Jobs, Transport and Resources
34 LUKE - Natural Resources Institute Finland
35 AGROCLIM - Agroclim
36 UMG - University Medical Center Göttingen
37 Computational and Systems Biology Department
38 Water & Food and Water Systems & Global Change Group
39 IGSNRR - Institute of geographical sciences and natural resources research [CAS]
40 Plant Production Systems
41 State Key Laboratory of Earth Surface Processes and Resource Ecology
Daniel Wallach
Connectez-vous pour contacter l'auteur
- Fonction : Auteur correspondant
- PersonId : 1204429
Connectez-vous pour contacter l'auteur
Pierre Martre
- Fonction : Auteur
- PersonId : 183362
- IdHAL : pierre-martre
- ORCID : 0000-0002-7419-6558
- IdRef : 163589194
Andrew J. Challinor
- Fonction : Auteur
- PersonId : 968229
Christine Girousse
- Fonction : Auteur
- PersonId : 744429
- IdHAL : christine-girousse
- ORCID : 0000-0002-8914-2878
Gerrit Hoogenboom
- Fonction : Auteur
- PersonId : 784208
- ORCID : 0000-0002-1555-0537
Christoph Müller
- Fonction : Auteur
- PersonId : 772079
- ORCID : 0000-0003-2234-6902
Claas Nendel
- Fonction : Auteur
- PersonId : 772081
- ORCID : 0000-0001-7608-9097
Mikhail A. Semenov
- Fonction : Auteur
- PersonId : 774453
- ORCID : 0000-0002-1561-7113
Résumé
A recent innovation in assessment of climate change impact on agricultural production has been to use crop multi model ensembles (MMEs). These studies usually find large variability between individual models but that the ensemble mean (e‐mean) and median (e‐median) often seem to predict quite well. However few studies have specifically been concerned with the predictive quality of those ensemble predictors. We ask what is the predictive quality of e‐mean and e‐median, and how does that depend on the ensemble characteristics. Our empirical results are based on five MME studies applied to wheat, using different data sets but the same 25 crop models. We show that the ensemble predictors have quite high skill and are better than most and sometimes all individual models for most groups of environments and most response variables. Mean squared error of e‐mean decreases monotonically with the size of the ensemble if models are added at random, but has a minimum at usually 2‐6 models if best‐fit models are added first. Our theoretical results describe the ensemble using four parameters; average bias, model effect variance, environment effect variance and interaction variance. We show analytically that mean squared error of prediction (MSEP) of e‐mean will always be smaller than MSEP averaged over models, and will be less than MSEP of the best model if squared bias is less than the interaction variance. If models are added to the ensemble at random, MSEP of e‐mean will decrease as the inverse of ensemble size, with a minimum equal to squared bias plus interaction variance. This minimum value is not necessarily small, and so it is important to evaluate the predictive quality of e‐mean for each target population of environments. These results provide new information on the advantages of ensemble predictors, but also show their limitations.
Origine | Fichiers produits par l'(les) auteur(s) |
---|