Assessment of the impact of PS3-induced resistance to downy mildew on grapevine physiology
Résumé
Elicitor-induced resistance against diseases is an attractive strategy that could contribute to reduce the use of fungicides for plant protection. However, activation of defenses has an energetic cost that plants have to fuel by a mobilization of their primary metabolism with possible adverse effect on their physiology. In this context, this study was performed to determine whether elicitor-induced resistance of grapevine leaves against downy mildew impacted its development and metabolism. The elicitor PS3 (sulfated beta-glucan laminarin) was sprayed on grapevine herbaceous cuttings grown in greenhouses once or three times, and its impact was studied on young and older grapevine leaves, prior to, and after Plasmopara viticola inoculation. PS3 did not affect grapevine development during the time course of the experiment. A metabolomic analysis, mainly focused on primary metabolites, highlighted a leaf age dependent effect of PS3 treatment. Nitrogen compounds, and sugars to a lesser extent, were impacted. The results obtained complete the current knowledge of the impact of elicitor-induced resistance on plant physiology. They will be helpful to guide further experiments required to better determine the costs and benefits of elicitor-induced resistance in plants.