Regio- and stereoselective oxidation of linoleic acid bound to serum albumin: identification by ESI-mass spectrometry and NMR of the oxidation products
Résumé
An efficient RP-HPLC method was developed for the detection of the oxidation products derived from the AAPH-initiated peroxidation of linoleic acid bound to human serum albumin. Diode array UV-detection allowed the quantification at 234 nm of four regioisomeric hydroperoxyoctadecadienoic acids (HPODE) and four hydroxyoctadecadienoic acids (HODE) while at 280 nm four oxooctadecadienoic acid isomers (KODE) were detected. Full identification of the different underivatized HODE, HPODE and KODE isomers was achieved by negative ESI–mass spectrometry outlining common fragmentation pathways for 9- and 13-regioisomers. Chemical synthesis of 9-(E,Z)-, 9-(E,E)-, 13-(Z,E)- and 13-(E,E)-KODE helped to their structural characterization by 1H NMR. Lipid peroxidation in the presence of albumin proved to be regioselective with a larger accumulation of 13-HPODE and 9-KODE isomers. Thermodynamically more stable E,E-stereoisomers were also favored by albumin for both HPODE and KODE.