Odorant-binding protein-based optoelectronic tongue and nose for sensing volatile organic compounds
Résumé
We developed an array of odorant-binding protein mutants with various binding properties. The same design is suitable for the detection and identification of volatile organic compounds (VOCs) both in the liquid phase and in the gas phase by surface plasmon resonance imaging. The obtained optoelectronic tongue is highly selective at low concentrations of VOCs with a low detection limit, but a narrow linear range. In comparison, the optoelectronic nose gives a much higher signal to noise ratio, but the discrimination of VOCs from different chemical classes requires kinetic data to get rid of non-specific signals. This work shows that these optoelectronic tongue and nose are promising for numerous applications, each system having its own advantages.