Skip to Main content Skip to Navigation
Conference papers

The topology of the protein network influences the dynamics of gene order: From systems biology to a systemic understanding of evolution

Abstract : Systems biology invites us to consider the dynamic interactions between the components of a living cell. Here, by evolving artificial organisms whose genomes encode protein networks, we show that a coupling emerges at the evolutionary time scale between the protein network and the structure of the genome. Gene order is more stable when the protein network is more densely connected, which most likely results from a long-term selection for mutational robustness. Understanding evolving organisms thus requires a systemic approach, taking into account the functional interactions between gene products, but also the global relationships between the genome and the proteome at the evolutionary time scale.
Document type :
Conference papers
Complete list of metadata

https://hal.inrae.fr/hal-02823137
Contributor : Migration Prodinra <>
Submitted on : Saturday, June 6, 2020 - 9:09:00 PM
Last modification on : Wednesday, July 8, 2020 - 12:42:18 PM

Identifiers

Collections

Citation

Carole Knibbe, Jean-Michel Fayard, Guillaume Beslon. The topology of the protein network influences the dynamics of gene order: From systems biology to a systemic understanding of evolution. 8. European Conference on Artificial Life, Sep 2005, Canterbury,, United Kingdom. ⟨10.1162/artl.2008.14.1.149⟩. ⟨hal-02823137⟩

Share

Metrics

Record views

13