LifeCLEF 2020 Teaser: Biodiversity Identification and Prediction Challenges - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement
Communication Dans Un Congrès Année : 2020

LifeCLEF 2020 Teaser: Biodiversity Identification and Prediction Challenges

Alexis Joly
Hervé Glotin
Elijah Cole
Julien Champ
Benjamin Deneu
Titouan Lorieul
Willem-Pier Vellinga

Résumé

Building accurate knowledge of the identity, the geographic distribution and the evolution of species is essential for the sustainable development of humanity, as well as for biodiversity conservation. However, the difficulty of identifying plants and animals in the field is hindering the aggregation of new data and knowledge. Identifying and naming living plants or animals is almost impossible for the general public and is often difficult even for professionals and naturalists. Bridging this gap is a key step towards enabling effective biodiversity monitoring systems. The LifeCLEF campaign, presented in this paper, has been promoting and evaluating advances in this domain since 2011. The 2020 edition proposes four data-oriented challenges related to the identification and prediction of biodiversity: (i) PlantCLEF: cross-domain plant identification based on herbarium sheets, (ii) BirdCLEF: bird species recognition in audio soundscapes, (iii) GeoLifeCLEF: location-based prediction of species based on environmental and occurrence data, and (iv) SnakeCLEF: image-based snake identification.
Fichier principal
Vignette du fichier
Joly2020_Chapter_LifeCLEF2020TeaserBiodiversity.pdf (245.43 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-02873670 , version 1 (13-07-2020)

Identifiants

Citer

Alexis Joly, Hervé Goëau, Christophe Botella, Rafael Ruiz de Castaneda, Hervé Glotin, et al.. LifeCLEF 2020 Teaser: Biodiversity Identification and Prediction Challenges. ECIR 2020 - 42nd European Conference on IR Research on Advances in Information Retrieval, Apr 2020, Lisbon, Portugal. pp.542-549, ⟨10.1007/978-3-030-45442-5_70⟩. ⟨hal-02873670⟩
222 Consultations
207 Téléchargements

Altmetric

Partager

More