Deep Learning for Automatic Colorization of Legacy Grayscale Aerial Photographs - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement
Article Dans Une Revue IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing Année : 2020

Deep Learning for Automatic Colorization of Legacy Grayscale Aerial Photographs

Résumé

Legacy grayscale aerial photographs represent one of the main available sources for studying the past state of the environment and its relationship to the present. However, these photographs lack spectral information thereby hindering their use in current remote sensing approaches that rely on spectral data for characterizing surfaces. This article proposes a conditional generative adversarial network, a deep learning model, to enrich legacy photographs by predicting color channels for an input grayscale image. The technique was used to colorize two orthophotographs (taken in 1956 and 1978) covering the entire Eurométropole de Strasbourg. To assess the model's performances, two strategies were proposed: first, colorized photographs were evaluated with metrics such as peak signal-to-noise ratio (PSNR), and structural similarity index (SSIM); second, random forest classifications were performed to extract land cover classes from grayscale and colorized photographs, respectively. The results revealed strong performances, with PSNR = 25.56 ± 2.20 and SSIM = 0.93 ± 0.06 indicating that the model successfully learned the mapping between grayscale and color photographs over a large territory. Moreover, land cover classifications performed on colorized data showed significant improvements over grayscale photographs, respectively, +6% and +17% for 1956 and 1978. Finally, the plausibility of outputs images was evaluated visually. We conclude that deep learning models are powerful tools for improving radiometric properties of old aerial grayscale photographs and land cover mapping. We also argue that the proposed approach could serve as a basis for further developments aiming to promote the use of aerial photographs archives for landscapes reconstruction.
Fichier principal
Vignette du fichier
Deep_Learning_for_Automatic_Colorization_of_Legacy_Grayscale_Aerial_Photographs.pdf (14.76 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Licence

Dates et versions

hal-02891804 , version 1 (26-09-2024)

Licence

Identifiants

Citer

Quentin Poterek, Pierre-Alexis Herrault, Grzegorz Skupinski, David Sheeren. Deep Learning for Automatic Colorization of Legacy Grayscale Aerial Photographs. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, pp.2899-2915. ⟨10.1109/JSTARS.2020.2992082⟩. ⟨hal-02891804⟩
84 Consultations
3 Téléchargements

Altmetric

Partager

More