Skip to Main content Skip to Navigation
Journal articles

Detection of sparse positive dependence

Abstract : In a bivariate setting, we consider the problem of detecting a sparse contamination or mixture component, where the effect manifests itself as a positive dependence between the variables, which are otherwise independent in the main component. We first look at this problem in the context of a normal mixture model. In essence, the situation reduces to a univariate setting where the effect is a decrease in variance. In particular, a higher criticism test based on the pairwise differences is shown to achieve the detection boundary defined by the (oracle) likelihood ratio test. We then turn to a Gaussian copula model where the marginal distributions are unknown. Standard invariance considerations lead us to consider rank tests. In fact, a higher criticism test based on the pairwise rank differences achieves the detection boundary in the normal mixture model, although not in the very sparse regime. We do not know of any rank test that has any power in that regime.
Document type :
Journal articles
Complete list of metadata

Cited literature [23 references]  Display  Hide  Download
Contributor : Montpellier Erist <>
Submitted on : Wednesday, August 26, 2020 - 2:57:51 PM
Last modification on : Tuesday, June 1, 2021 - 10:48:04 PM


Files produced by the author(s)


Distributed under a Creative Commons Attribution 4.0 International License



Ery Arias-Castro, Rong Huang, Nicolas Verzelen. Detection of sparse positive dependence. Electronic Journal of Statistics , Shaker Heights, OH : Institute of Mathematical Statistics, 2020, 14 (1), pp.702-730. ⟨10.1214/19-EJS1675⟩. ⟨hal-02922761⟩



Record views


Files downloads