Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

In field detection of downy mildew symptoms with proximal colour imaging

Abstract : This paper proposes to study the potentialities of on-board colour imaging for the in-field detection of a textbook case disease: the grapevine downy mildew. It introduces an algorithmic strategy for the detection of various forms of foliar symptoms on proximal high-resolution images. The proposed strategy is based on structure-colour representations and probabilistic models of grapevine tissues. It operates in three steps: (i) Formulating descriptors to extract the characteristic and discriminating properties of each class. They combine the Local Structure Tensors (LST) with colorimetric statistics calculated in pixel's neighbourhood. (ii) Modelling the statistical distributions of these descriptors in each class. To account for the specific nature of LSTs, the descriptors are mapped in the Log-Euclidean space. In this space, the classes of interest can be modelled with mixtures of multivariate Gaussian distributions. (iii) Assigning each pixel to one of the classes according to its suitability to their models. The decision method is based on a "seed growth segmentation" process. This step exploits statistical criteria derived from the probabilistic model. The resulting processing chain reliably detects downy mildew symptoms and estimates the area of the affected tissues. A leave-one-out cross-validation is conducted on a dataset constituted of a hundred independent images of grapevines affected only by downy mildew and/or abiotic stresses. The proposed method achieves an extensive and accurate recovery of foliar symptoms, with on average, a 83% pixel-wise precision and a 76% pixel-wise recall.
Type de document :
Article dans une revue
Liste complète des métadonnées

Littérature citée [39 références]  Voir  Masquer  Télécharger

https://hal.inrae.fr/hal-02951597
Déposant : Isabelle Nault <>
Soumis le : lundi 28 septembre 2020 - 17:46:29
Dernière modification le : mercredi 14 octobre 2020 - 03:53:32

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Lien texte intégral

Identifiants

Citation

Florent Abdelghafour, Barna Keresztes, Christian Germain, Jean-Pierre da Costa. In field detection of downy mildew symptoms with proximal colour imaging. Sensors, MDPI, 2020, 20 (16), pp.4380. ⟨10.3390/s20164380⟩. ⟨hal-02951597⟩

Partager

Métriques

Consultations de la notice

30