Block models for generalized multipartite networks: Applications in ecology and ethnobiology - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement
Article Dans Une Revue Statistical Modelling Année : 2020

Block models for generalized multipartite networks: Applications in ecology and ethnobiology

Résumé

Generalized multipartite networks consist in the joint observation of several networks implying some common pre-specified groups of individuals. Such complex networks arise commonly in social sciences, biology, ecology, etc. We propose a flexible probabilistic model named Multipartite Block Model (MBM) able to unravel the topology of multipartite networks by identifying clusters (blocks) of nodes sharing the same patterns of connectivity across the collection of networks they are involved in. The model parameters are estimated through a variational version of the Expectation–Maximization algorithm. The numbers of blocks are chosen using an Integrated Completed Likelihood criterion specifically designed for our model. A simulation study illustrates the robustness of the inference strategy. Finally, two datasets respectively issued from ecology and ethnobiology are analyzed with the MBM in order to illustrate its flexibility and its relevance for the analysis of real datasets.
Fichier principal
Vignette du fichier
1807.10138.pdf (681.81 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03117427 , version 1 (11-04-2022)

Identifiants

Citer

Avner Bar-Hen, Pierre M Barbillon, Sophie Donnet. Block models for generalized multipartite networks: Applications in ecology and ethnobiology. Statistical Modelling, 2020, pp.1471082X2096325. ⟨10.1177/1471082X20963254⟩. ⟨hal-03117427⟩
158 Consultations
144 Téléchargements

Altmetric

Partager

More