Skip to Main content Skip to Navigation
Journal articles

CATION-CHLORIDE CO-TRANSPORTER 1 (CCC1) Mediates Plant Resistance against Pseudomonas syringae

Abstract : Plasma membrane (PM) depolarization functions as an initial step in plant defense signaling pathways. However, only a few ion channels/transporters have been characterized in the context of plant immunity. Here, we show that the Arabidopsis (Arabidopsis thaliana) Na+:K+:2Cl(-) (NKCC) cotransporter CCC1 has a dual function in plant immunity. CCC1 functions independently of PM depolarization and negatively regulates pathogen-associated molecular pattern-triggered immunity. However, CCC1 positively regulates plant basal and effector-triggered resistance to Pseudomonas syringae pv. tomato (Pst) DC3000. In line with the compromised immunity to Pst DC3000, ccc1 mutants show reduced expression of genes encoding enzymes involved in the biosynthesis of antimicrobial peptides, camalexin, and 4-OH-ICN, as well as pathogenesis-related proteins. Moreover, genes involved in cell wall and cuticle biosynthesis are constitutively down-regulated in ccc1 mutants, and the cell walls of these mutants exhibit major changes in monosaccharide composition. The role of CCC1 ion transporter activity in the regulation of plant immunity is corroborated by experiments using the specific NKCC inhibitor bumetanide. These results reveal a function for ion transporters in immunity-related cell wall fortification and antimicrobial biosynthesis.
Document type :
Journal articles
Complete list of metadata
Contributor : Christopher Lallemant <>
Submitted on : Monday, March 8, 2021 - 9:47:22 AM
Last modification on : Friday, September 17, 2021 - 8:24:01 PM

Links full text



Baoda Han, Yunhe Jiang, Guoxin Cui, Jianing Mi, M. Rob G. Roelfsema, et al.. CATION-CHLORIDE CO-TRANSPORTER 1 (CCC1) Mediates Plant Resistance against Pseudomonas syringae. Plant Physiology, American Society of Plant Biologists, 2020, 182 (2), pp.1052-1065. ⟨10.1104/pp.19.01279⟩. ⟨hal-03161798⟩



Record views