Cluster-based GSA: Global sensitivity analysis of models with temporal or spatial outputs using clustering - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement
Article Dans Une Revue Environmental Modelling and Software Année : 2021

Cluster-based GSA: Global sensitivity analysis of models with temporal or spatial outputs using clustering

Résumé

A new method named cluster-based GSA is proposed to enhance the sensitivity analysis of models with temporal or spatial outputs. It is based on a tight coupling between Global Sensitivity Analysis (GSA) and clustering procedures. Clustering is introduced to characterize the different behaviors of the model outputs by grouping them into clusters. The cluster-based GSA produces variance-based indices that quantify how the model inputs drive the model outputs toward a given cluster or how they influence variation along a direction defined by two clusters. Aggregated indices are proposed to summarize the overall influence of model inputs on changes of clusters. The method is applied on two models having temporal outputs: a toy example and an environmental model simulating the decomposition of soil organic matter (CANTIS). In both cases, the influence of the model inputs on the different behaviors of model outputs was efficiently reported by this approach.
Fichier principal
Vignette du fichier
2021-postprint_roux.pdf (2.95 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03203049 , version 1 (10-06-2022)

Licence

Identifiants

Citer

Sébastien Roux, Samuel Buis, François Lafolie, Matieyendou Lamboni. Cluster-based GSA: Global sensitivity analysis of models with temporal or spatial outputs using clustering. Environmental Modelling and Software, 2021, 140, pp.105046. ⟨10.1016/j.envsoft.2021.105046⟩. ⟨hal-03203049⟩
107 Consultations
108 Téléchargements

Altmetric

Partager

More