HAL will be down for maintenance from Friday, June 10 at 4pm through Monday, June 13 at 9am. More information
Skip to Main content Skip to Navigation
Journal articles

Is vulnerability segmentation at the leaf-stem transition a drought resistance mechanism? A theoretical test with a trait-based model for Neotropical canopy tree species

Abstract : Key message: Leaf-stem vulnerability segmentation predicts lower xylem embolism resistance in leaves than stem. However, although it has been intensively investigated these past decades, the extent to which vulnerability segmentation promotes drought resistance is not well understood. Based on a trait-based model, this study theoretically supports that vulnerability segmentation enhances shoot desiccation time across 18 Neotropical tree species. Context: Leaf-stem vulnerability segmentation predicts lower xylem embolism resistance in leaves than stems thereby preserving expensive organs such as branches or the trunk. Although vulnerability segmentation has been intensively investigated these past decades to test its consistency across species, the extent to which vulnerability segmentation promotes drought resistance is not well understood. Aims: We investigated the theoretical impact of the degree of vulnerability segmentation on shoot desiccation time estimated with a simple trait-based model. Methods We combined data from 18 tropical rainforest canopy tree species on embolism resistance of stem xylem (flow-centrifugation technique) and leaves (optical visualisation method). Measured water loss under minimum leaf and bark conductance, leaf and stem capacitance, and leaf-to-bark area ratio allowed us to calculate a theoretical shoot desiccation time ( t crit ). Results: Large degrees of vulnerability segmentation strongly enhanced the theoretical shoot desiccation time, suggesting vulnerability segmentation to be an efficient drought resistance mechanism for half of the studied species. The difference between leaf and bark area, rather than the minimum leaf and bark conductance, determined the drastic reduction of total transpiration by segmentation during severe drought. Conclusion: Our study strongly suggests that vulnerability segmentation is an important drought resistance mechanism that should be better taken into account when investigating plant drought resistance and modelling vegetation. We discuss future directions for improving model assumptions with empirical measures, such as changes in total shoot transpiration after leaf xylem embolism.
Complete list of metadata

https://hal.inrae.fr/hal-03369095
Contributor : Yannick Brohard Connect in order to contact the contributor
Submitted on : Thursday, October 7, 2021 - 10:36:07 AM
Last modification on : Friday, April 1, 2022 - 3:49:23 AM
Long-term archiving on: : Saturday, January 8, 2022 - 6:28:29 PM

File

Levionnois2021_AnnSciFor.pdf
Publisher files allowed on an open archive

Identifiers

Citation

Sébastien Levionnois, Camille Ziegler, Patrick Heuret, Steven Jansen, Clement Stahl, et al.. Is vulnerability segmentation at the leaf-stem transition a drought resistance mechanism? A theoretical test with a trait-based model for Neotropical canopy tree species. Annals of Forest Science, Springer Nature (since 2011)/EDP Science (until 2010), 2021, 78 (4), ⟨10.1007/s13595-021-01094-9⟩. ⟨hal-03369095⟩

Share

Metrics

Record views

84

Files downloads

21