The combination of residue quality, residue placement and soil mineral N content drives C and N dynamics by modifying N availability to microbial decomposers - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement
Journal Articles Soil Biology and Biochemistry Year : 2021

The combination of residue quality, residue placement and soil mineral N content drives C and N dynamics by modifying N availability to microbial decomposers

Abstract

Crop residues are the main source of carbon (C) inputs to soils in cropping systems, and their subsequent decomposition is crucial for nutrient recycling. The interactive effects of residue chemical quality, residue placement and soil mineral nitrogen (N) availability on carbon and N mineralization dynamics were experimentally examined and interpreted using a modelling approach with the deterministic-functional, dynamic decomposition module of the Simulateur mulTIdisciplinaire pour les Cultures Standard (STICS) model. We performed a 120-day incubation at 25 °C to evaluate how the mineralization of C and N from residues would respond to residue type (residues of 10 crop species with C:N ratios varying from 13 to 105), placement (surface or incorporated) and initial soil mineral N content (9 or 77 mg N kg−1 dry soil). A reduced C mineralization rate was associated with N limitation, as observed for high-C:N ratio residues, and shaped by residue placement and initial soil mineral N content. This was not observed for low-C:N ratio residues. Overall, increased net N mineralization corresponded with reduced N availability. Using the optimization procedure in the STICS decomposition module to explain the C and N dynamics of surface-decomposing residues, we estimated that 24% of the total soil mineral N would be accessible to decomposers. The STICS decomposition module reproduced the C and N dynamics for each treatment well after five parameters were optimized. The optimized values of the biomass C:N (CNbio), residue decomposition rate (k), humification coefficient of microbial C (h), and microbial decomposition rate (λ) were significantly correlated with total N availability across all 40 treatments. Under low total N availability, CNbio increased, while k, h and λ decreased compared to their values under high N availability, suggesting functional changes in the microbial community of decomposers. Our results show that an N availability approach could be used to estimate residue C dynamics and net N mineralization in the field in response to crop residue quality and placement and demonstrate the potential to improve decomposition models by considering the effects of N availability on C dynamics.
Fichier principal
Vignette du fichier
S0038071721003084.pdf (592.85 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-03375925 , version 1 (16-10-2023)

Licence

Identifiers

Cite

Bruno Chaves, Marciel Redin, Sandro José Giacomini, Raquel Schmatz, Joël Léonard, et al.. The combination of residue quality, residue placement and soil mineral N content drives C and N dynamics by modifying N availability to microbial decomposers. Soil Biology and Biochemistry, 2021, 163, pp.1-13. ⟨10.1016/j.soilbio.2021.108434⟩. ⟨hal-03375925⟩
92 View
42 Download

Altmetric

Share

More