Cell-Free Biosensors and AI integration - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement
Chapitre D'ouvrage Année : 2022

Cell-Free Biosensors and AI integration

Résumé

Cell-free biosensors hold a great potential as alternatives for traditional analytical chemistry methods providing low-cost low resource measurement of specific chemicals. However, their large scale use is limited by the complexity of their development. In this chapter we present a standard methodology based on Computer aided design (CAD) tools that enables fast development of new cell-free biosensors based on target molecule information transduction and reporting through metabolic and genetic layers, respectively. Such systems can then be repurposed to represent complex computational problems, allowing defined multiplex sensing of various inputs and integration of artificial intelligence in synthetic biological systems.
Fichier principal
Vignette du fichier
Faulon_MiMBManuscript.pdf (1.28 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03545753 , version 1 (27-01-2022)

Licence

Copyright (Tous droits réservés)

Identifiants

Citer

Paul Soudier, Léon Faure, Manish Kushwaha, Jean-Loup Faulon. Cell-Free Biosensors and AI integration. Cell-Free Gene Expression, 2433, Springer US, pp.303-323, 2022, Methods in Molecular Biology, ⟨10.1007/978-1-0716-1998-8_19⟩. ⟨hal-03545753⟩
231 Consultations
192 Téléchargements

Altmetric

Partager

More