Shift in beneficial interactions during crop evolution
Résumé
Plant domestication can be viewed as a form of co-evolved interspecific mutualism between humans and crops for the benefit of the two partners. Here, we ask how this plant-human mutualism has, in turn, impacted beneficial interactions within crop species, between crop species, and between crops and their associated microbial partners. We focus on beneficial interactions resulting from three main mechanisms that can be promoted by manipulating genetic diversity in agrosystems: niche partitioning, facilitation, and kin selection. We show that a combination of factors has impacted either directly or indirectly plant-plant interactions during domestication and breeding, with a trend toward reduced benefits arising from niche partitioning and facilitation. Such factors include marked decrease of molecular and functional diversity of crops and other organisms present in the agroecosystem, mass selection, and increased use of chemical inputs. For example, the latter has likely contributed to the relaxation of selection pressures on nutrient-mobilizing traits such as those associated to root exudation and plant nutrient exchanges via microbial partners. In contrast, we show that beneficial interactions arising from kin selection have likely been promoted since the advent of modern breeding. We highlight several issues that need further investigation such as whether crop phenotypic plasticity has evolved and could trigger beneficial interactions in crops, and whether human-mediated selection has impacted cooperation via kin recognition. Finally, we discuss how plant breeding and agricultural practices can help promoting beneficial interactions within and between species in the context of agroecology where the mobilization of diversity and complexity of crop interactions is viewed as a keystone of agroecosystem sustainability.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|