Physical Enrichment Triggers Brain Plasticity and Influences Blood Plasma Circulating miRNA in Rainbow Trout (Oncorhynchus mykiss)
Résumé
Physical enrichment is known to improve living conditions of fish held in farming systems and has been shown to promote behavioral plasticity in captive fish. However, the brain’s regulatory-mechanism systems underlying its behavioral effects remain poorly studied. The present study investigated the impact of a three-month exposure to an enriched environment (EE vs. barren environment, BE) on the modulation of brain function in rainbow trout (Oncorhynchus mykiss) juveniles. Using high-throughput RT-qPCR, we assessed mRNA genes related to brain function in several areas of the trout brain. These included markers of cerebral activity and plasticity, neurogenesis, synaptogenesis, or selected neurotransmitters pathways (dopamine, glutamate, GABA, and serotonin). Overall, the fish from EE displayed a series of differentially expressed genes (neurotrophic, neurogenesis, and synaptogenesis markers) essentially localized in the telencephalon, which could underpin the beneficial effects of complexifying the environment on fish brain plasticity. In addition, EE significantly affected blood plasma c-miRNA signatures, as revealed by the upregulation of four c-miRNAs (miR-200b/c-3p, miR-203a-3p, miR-205-1a-5p, miR-218a-5p) in fish blood plasma after 185 days of EE exposure. Overall, we concluded that complexifying the environment through the addition of physical structures that stimulate and encourage fish to explore promotes the trout’s brain function in farming conditions.
Origine | Fichiers produits par l'(les) auteur(s) |
---|