Inverting Regional Sensitivity Analysis to reveal sensitive model behaviors - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement
Pré-Publication, Document De Travail (Preprint/Prepublication) Année : 2022

Inverting Regional Sensitivity Analysis to reveal sensitive model behaviors

Résumé

We address the question of sensitivity analysis for model outputs of any dimension using Regional Sensitivity Analysis (RSA). Classical RSA computes sensitivity indices related to the impact of model inputs variations on the occurrence of a target region of the model output space. In this work, we invert this perspective by proposing to find, for a given target model input, the region whose occurrence is best explained by the variations of this input. When it exists, this region can be seen as a model behavior which is particularly sensitive to the variations of the model input under study. We name this method iRSA (for inverse RSA). iRSA is formalized as an optimization problem using region-based sensitivity indices and solved using dedicated numerical algorithms. Using analytical and numerical examples, including an environmental model producing time series, we show that iRSA can provide a new graphical and interpretable characterization of sensitivity for model outputs of various dimensions.
Fichier principal
Vignette du fichier
main.pdf (598.68 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03836513 , version 1 (02-11-2022)
hal-03836513 , version 2 (18-03-2024)
hal-03836513 , version 3 (01-10-2024)

Identifiants

Citer

Sébastien Roux, Patrice Loisel, Samuel Buis. Inverting Regional Sensitivity Analysis to reveal sensitive model behaviors. 2022. ⟨hal-03836513v1⟩
120 Consultations
88 Téléchargements

Altmetric

Partager

More