Combining Metabolic Engineering and Multiplexed Screening Methods for 3-Hydroxypropionic Acid Production in Pichia pastoris - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement Accéder directement au contenu
Article Dans Une Revue Frontiers in Bioengineering and Biotechnology Année : 2022

Combining Metabolic Engineering and Multiplexed Screening Methods for 3-Hydroxypropionic Acid Production in Pichia pastoris

Résumé

Production of 3-hydroxypropionic acid (3-HP) in Pichia pastoris ( syn. Komagataella phaffii ) via the malonyl-CoA pathway has been recently demonstrated using glycerol as a carbon source, but the reported metrics were not commercially relevant. The flux through the heterologous pathway from malonyl-CoA to 3-HP was hypothesized as the main bottleneck. In the present study, different metabolic engineering approaches have been combined to improve the productivity of the original 3-HP producing strains. To do so, an additional copy of the gene encoding for the potential rate-limiting step of the pathway, i.e., the C-terminal domain of the malonyl-CoA reductase, was introduced. In addition, a variant of the endogenous acetyl-CoA carboxylase ( ACC1 S1132A ) was overexpressed with the aim to increase the delivery of malonyl-CoA. Furthermore, the genes encoding for the pyruvate decarboxylase, aldehyde dehydrogenase and acetyl-CoA synthase, respectively, were overexpressed to enhance conversion of pyruvate into cytosolic acetyl-CoA, and the main gene responsible for the production of the by-product D-arabitol was deleted. Three different screening conditions were used to classify the performance of the different strains: 24-deep-well plates batch cultures, small-scale cultures in falcon tubes using FeedBeads® (i.e., slow release of glycerol over time), and mini bioreactor batch cultures. The best two strains from the FeedBeads® screening, PpHP8 and PpHP18, were tested in bioreactor fed-batch cultures using a pre-fixed exponentially increasing feeding rate. The strain PpHP18 produced up to 37.05 g L −1 of 3-HP at 0.712 g L −1 h −1 with a final product yield on glycerol of 0.194 Cmol −1 in fed-batch cultures. Remarkably, PpHP18 did not rank among the 2-top producer strains in small scale batch cultivations in deep-well plates and mini bioreactors, highlighting the importance of multiplexed screening conditions for adequate assessment of metabolic engineering strategies. These results represent a 50% increase in the product yield and final concentration, as well as over 30% increase in volumetric productivity compared to the previously obtained metrics for P. pastoris . Overall, the combination of glycerol as carbon source and a metabolically engineered P. pastoris strain resulted in the highest 3-HP concentration and productivity reported so far in yeast.
Fichier principal
Vignette du fichier
2022_Fina_Frontiers-in-Bioengineering-and-Biotechnology.pdf (1.7 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03836687 , version 1 (02-11-2022)

Licence

Paternité

Identifiants

Citer

Albert Fina, Stephanie Heux, Joan Albiol, Pau Ferrer. Combining Metabolic Engineering and Multiplexed Screening Methods for 3-Hydroxypropionic Acid Production in Pichia pastoris. Frontiers in Bioengineering and Biotechnology, 2022, 10, ⟨10.3389/fbioe.2022.942304⟩. ⟨hal-03836687⟩
31 Consultations
41 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More