Extinction rate of continuous state branching processes in critical Lévy environments - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement
Article Dans Une Revue ESAIM: Probability and Statistics Année : 2021

Extinction rate of continuous state branching processes in critical Lévy environments

Résumé

We study the speed of extinction of continuous state branching processes in a Lévy environment, where the associated Lévy process oscillates. Assuming that the Lévy process satisfies Spitzer’s condition, we extend recent results where the associated branching mechanism is stable. The study relies on the path analysis of the branching process together with its Lévy environment, when the latter is conditioned to have a non-negative running infimum. For that purpose, we combine the approach developed in Afanasyev et al. [2], for the discrete setting and i.i.d. environments, with fluctuation theory of Lévy processes and a result on exponential functionals of Lévy processes due to Patie and Savov [28].
Fichier principal
Vignette du fichier
2021_Bansaye_ ESAIM Probability and Statistics.pdf (536.41 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Licence

Dates et versions

hal-04073937 , version 1 (08-08-2023)

Licence

Identifiants

Citer

Vincent Bansaye, Juan Carlos Pardo, Charline Smadi. Extinction rate of continuous state branching processes in critical Lévy environments. ESAIM: Probability and Statistics, 2021, 25 (1), pp.1-30. ⟨10.1051/ps/2021014⟩. ⟨hal-04073937⟩
50 Consultations
16 Téléchargements

Altmetric

Partager

More