BABA-induced pathogen resistance: a multi-omics analysis of the tomato response reveals a hyper-receptive status involving ethylene - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement
Article Dans Une Revue Horticulture research Année : 2023

BABA-induced pathogen resistance: a multi-omics analysis of the tomato response reveals a hyper-receptive status involving ethylene

Résumé

Prior exposure to microbial-associated molecular patterns or specific chemical compounds can promote plants into a primed state with stronger defence responses. β-aminobutyric acid (BABA) is an endogenous stress metabolite that induces resistance protecting various plants towards diverse stresses. In this study, by integrating BABA-induced changes in selected metabolites with transcriptome and proteome data, we generated a global map of the molecular processes operating in BABA-induced resistance (BABA-IR) in tomato. BABA significantly restricts the growth of the pathogens Oidium neolycopersici and Phytophthora parasitica but not Botrytis cinerea. A cluster analysis of the upregulated processes showed that BABA acts mainly as a stress factor in tomato. The main factor distinguishing BABA-IR from other stress conditions was the extensive induction of signaling and perception machinery playing a key role in effective resistance against pathogens. Interestingly, the signalling processes and immune response activated during BABA-IR in tomato differed from those in Arabidopsis with substantial enrichment of genes associated with jasmonic acid (JA) and ethylene (ET) signalling and no change in Asp levels. Our results revealed key differences between the effect of BABA on tomato and other model plants studied until now. Surprisingly, salicylic acid (SA) is not involved in BABA downstream signalization whereas ET and JA play a crucial role.
Fichier principal
Vignette du fichier
2023_Zapletalova_Horticultural-Research_postprint.pdf (1.13 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-04083547 , version 1 (27-04-2023)

Licence

Identifiants

Citer

Martina Zapletalová, Corinne Rancurel, Benoit Industri, Marc Bardin, Kevin Lebrigand, et al.. BABA-induced pathogen resistance: a multi-omics analysis of the tomato response reveals a hyper-receptive status involving ethylene. Horticulture research, 2023, pp.uhad068. ⟨10.1093/hr/uhad068⟩. ⟨hal-04083547⟩
47 Consultations
40 Téléchargements

Altmetric

Partager

More