A versatile active learning workflow for optimization of genetic and metabolic networks - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement
Article Dans Une Revue Nature Communications Année : 2022

A versatile active learning workflow for optimization of genetic and metabolic networks

Résumé

Abstract Optimization of biological networks is often limited by wet lab labor and cost, and the lack of convenient computational tools. Here, we describe METIS, a versatile active machine learning workflow with a simple online interface for the data-driven optimization of biological targets with minimal experiments. We demonstrate our workflow for various applications, including cell-free transcription and translation, genetic circuits, and a 27-variable synthetic CO 2 -fixation cycle (CETCH cycle), improving these systems between one and two orders of magnitude. For the CETCH cycle, we explore 10 25 conditions with only 1,000 experiments to yield the most efficient CO 2 -fixation cascade described to date. Beyond optimization, our workflow also quantifies the relative importance of individual factors to the performance of a system identifying unknown interactions and bottlenecks. Overall, our workflow opens the way for convenient optimization and prototyping of genetic and metabolic networks with customizable adjustments according to user experience, experimental setup, and laboratory facilities.
Fichier principal
Vignette du fichier
2022_Pandi_Nature_Commun.pdf (4.31 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Licence

Dates et versions

hal-04099006 , version 1 (16-05-2023)

Licence

Identifiants

Citer

Amir Pandi, Christoph Diehl, Ali Yazdizadeh Kharrazi, Scott A Scholz, Elizaveta Bobkova, et al.. A versatile active learning workflow for optimization of genetic and metabolic networks. Nature Communications, 2022, 13 (1), pp.3876. ⟨10.1038/s41467-022-31245-z⟩. ⟨hal-04099006⟩
111 Consultations
13 Téléchargements

Altmetric

Partager

More