Learning Regionalization Using Accurate Spatial Cost Gradients Within a Differentiable High-Resolution Hydrological Model: Application to the French Mediterranean Region
Résumé
Estimating spatially distributed hydrological parameters in ungauged catchments poses a challenging regionalization problem and requires imposing spatial constraints given the sparsity of discharge data. A possible approach is to search for a transfer function that quantitatively relates physical descriptors to conceptual model parameters. This paper introduces a Hybrid Data Assimilation and Parameter Regionalization (HDA-PR) approach incorporating learnable regionalization mappings, based on either multi-linear regression or artificial neural networks (ANNs), into a differentiable hydrological model. This approach demonstrates how two differentiable codes can be linked and their gradients chained, enabling the exploitation of heterogeneous data sets across extensive spatio-temporal computational domains within a high-dimensional regionalization context, using accurate adjoint-based gradients. The inverse problem is tackled with a multi-gauge calibration cost function accounting for information from multiple observation sites. HDA-PR was tested on high-resolution, hourly and kilometric regional modeling of 126 flash-flood-prone catchments in the French Mediterranean region. The results highlight a strong regionalization performance of HDA-PR especially in the most challenging upstream-to-downstream extrapolation scenario with ANN, achieving median Nash-Sutcliffe efficiency (NSE) scores from 0.6 to 0.71 for spatial, temporal, spatio-temporal validations, and improving NSE by up to 30% on average compared to the baseline model calibrated with lumped parameters. Multiple evaluation metrics based on flood-oriented hydrological signatures also indicate that the use of an ANN leads to better performances than a multi-linear regression in a validation context. ANN enables to learn a non-linear descriptors-to-parameters mapping which provides better model controllability than a linear mapping for complex calibration cases.
Origine | Fichiers produits par l'(les) auteur(s) |
---|