Enhanced database creation with in silico workflows for suspect screening of unknown tebuconazole transformation products in environmental samples by UHPLC-HRMS
Résumé
The search and identification of organic contaminants in agricultural watersheds has become a crucial effort to better characterize watershed contamination by pesticides. The past decade has brought a more holistic view of watershed contamination via the deployment of powerful analytical strategies such as non-target and suspect screening analysis that can search more contaminants and their transformation products. However, suspect screening analysis remains broadly confined to known molecules, primarily due to the lack of analytical standards and suspect databases for unknowns such as pesticide transformation products. Here we developed a novel workflow by cross-comparing the results of various in silico prediction tools against literature data to create an enhanced database for suspect screening of pesticide transformation products. This workflow was applied on tebuconazole,25
used here as a model pesticide, and resulted in a suspect screening database counting 291 transformation products. The chromatographic retention times and tandem mass spectra were predicted for each of these compounds using 6 models based on multilinear regression and more complex machine-learning algorithms. This comprehensive approach to the investigation and identification of tebuconazole transformation products was retrospectively applied on environmental samples and found 6 transformation products identified for the first time in river water samples.
Origine | Fichiers produits par l'(les) auteur(s) |
---|