A neural-mechanistic hybrid approach improving the predictive power of genome-scale metabolic models - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement
Journal Articles Nature Communications Year : 2023

A neural-mechanistic hybrid approach improving the predictive power of genome-scale metabolic models

Abstract

Constraint-based metabolic models have been used for decades to predict the phenotype of microorganisms in different environments. However, quantitative predictions are limited unless labor-intensive measurements of media uptake fluxes are performed. We show how hybrid neural-mechanistic models can serve as an architecture for machine learning providing a way to improve phenotype predictions. We illustrate our hybrid models with growth rate predictions of Escherichia coli and Pseudomonas putida grown in different media and with phenotype predictions of gene knocked-out Escherichia coli mutants. Our neural-mechanistic models systematically outperform constraint-based models and require training set sizes orders of magnitude smaller than classical machine learning methods. Our hybrid approach opens a doorway to enhancing constraint-based modeling: instead of constraining mechanistic models with additional experimental measurements, our hybrid models grasp the power of machine learning while fulfilling mechanistic constrains, thus saving time and resources in typical systems biology or biological engineering projects.
Fichier principal
Vignette du fichier
Faure_2023_Nature_Communications_AMN.pdf (1.8 Mo) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-04178761 , version 1 (08-08-2023)

Identifiers

Cite

Léon Faure, Bastien Mollet, Wolfram Liebermeister, Jean-Loup Faulon. A neural-mechanistic hybrid approach improving the predictive power of genome-scale metabolic models. Nature Communications, 2023, 14, pp.4669. ⟨10.1038/s41467-023-40380-0⟩. ⟨hal-04178761⟩
117 View
23 Download

Altmetric

Share

More