Article Dans Une Revue Peer Community Journal Année : 2022

Joint inference of adaptive and demographic history from temporal population genomic data

Résumé

Disentangling the effects of selection and drift is a long-standing problem in population genetics. Simulations show that pervasive selection may bias the inference of demography. Ideally, models for the inference of demography and selection should account for the interaction between these two forces. With simulation-based likelihood-free methods such as Approximate Bayesian Computation (ABC), demography and selection parameters can be jointly estimated. We propose to use the ABC-Random Forests framework to jointly infer demographic and selection parameters from temporal population genomic data (e.g. experimental evolution, monitored populations, ancient DNA). Our framework allowed the separation of demography (census size, N) from the genetic drift (effective population size, N e) and the estimation of genome-wide parameters of selection. Selection parameters informed us about the adaptive potential of a population (the scaled mutation rate of beneficial mutations, θ b), the realized adaptation (the number of mutations under strong selection), and population fitness (genetic load). We applied this approach to a dataset of feral populations of honey bees (Apis mellifera) collected in California, and we estimated parameters consistent with the biology and the recent history of this species.
Fichier principal
Vignette du fichier
10_24072_pcjournal_203.pdf (2.18 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Licence

Dates et versions

hal-04179331 , version 1 (09-08-2023)

Licence

Identifiants

Citer

Vitor A. C. Pavinato, Stéphane de Mita, Jean-Michel Marin, Miguel de Navascués. Joint inference of adaptive and demographic history from temporal population genomic data. Peer Community Journal, 2022, 2, pp.e78. ⟨10.24072/pcjournal.203⟩. ⟨hal-04179331⟩
46 Consultations
46 Téléchargements

Altmetric

Partager

More