A FEM Free Vibration Analysis of Variable Stiffness Composite Plates through Hierarchical Modeling - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement Access content directly
Journal Articles Materials Year : 2023

A FEM Free Vibration Analysis of Variable Stiffness Composite Plates through Hierarchical Modeling

Abstract

Variable Angle Tow (VAT) laminates offer a promising alternative to classical straight-fiber composites in terms of design and performance. However, analyzing these structures can be more complex due to the introduction of new design variables. Carrera’s unified formulation (CUF) has been successful in previous works for buckling, vibrational, and stress analysis of VAT plates. Typically, one-dimensional (1D) and two-dimensional (2D) CUF models are used, with a linear law describing the fiber orientation variation in the main plane of the structure. The objective of this article is to expand the CUF 2D plate finite elements family to perform free vibration analysis of composite laminated plate structures with curvilinear fibers. The primary contribution is the application of Reissner’s mixed variational theorem (RMVT) to a CUF finite element model. The principle of virtual displacements (PVD) and RMVT are both used as variational statements for the study of monolayer and multilayer VAT plate dynamic behavior. The proposed approach is compared to Abaqus three-dimensional (3D) reference solutions, classical theories and literature results to investigate the effectiveness of the developed models. The results demonstrate that mixed theories provide the best approximation of the reference solution in all cases.
Fichier principal
Vignette du fichier
2023-Giunta.pdf (3.73 Mo) Télécharger le fichier
Origin Publisher files allowed on an open archive
Licence

Dates and versions

hal-04214571 , version 1 (22-09-2023)

Licence

Identifiers

Cite

Gaetano Giunta, Domenico Andrea Iannotta, Marco Montemurro. A FEM Free Vibration Analysis of Variable Stiffness Composite Plates through Hierarchical Modeling. Materials, 2023, 16 (13), pp.4643. ⟨10.3390/ma16134643⟩. ⟨hal-04214571⟩
35 View
10 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More