Genomic prediction and landscape genomics in a large maize landraces collection using high-throughput pool genotyping identifies promising sources of diversity for prebreeding - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement Access content directly
Conference Poster Year : 2023

Genomic prediction and landscape genomics in a large maize landraces collection using high-throughput pool genotyping identifies promising sources of diversity for prebreeding

Sarah Hearne
  • Function : Author
Carlotta Balconi
  • Function : Author
Ana Butrón
  • Function : Author
Pedro Revilla
  • Function : Author
Rosa Ana Malvar
  • Function : Author
Anne Zanetto
  • Function : Author
Ana Maria Barata
  • Function : Author
Danela Murariu
  • Function : Author
Natalija Kravic
  • Function : Author
Beate Schierscher-Viret
  • Function : Author
Pedro Mendes-Moreira
  • Function : Author
A.R. Pereira
  • Function : Author
Hrvoje Šarčević
  • Function : Author
Monica Menz
  • Function : Author
Stéphane Melkior
  • Function : Author
Benoit Pétiard
  • Function : Author
Thomas Presterl
  • Function : Author
Bettina Kessel
  • Function : Author
A. Strigens
  • Function : Author
Amélie Le Foll
  • Function : Author
Carole Derue
  • Function : Author
Alain Murigneux
  • Function : Author
Ulrike Lohwasser
  • Function : Author
Sandra Goritschnig
  • Function : Author
Violeta Andjelkovic
  • Function : Author

Abstract

Maize landraces are a valuable source of genetic diversity for facing climate change due to their local adaptation. High-throughput pool genotyping (HPG) is a cost-effective approach to genotype maize landraces and identify promising sources of alleles for tolerance to abiotic stress. We applied this approach on a large world-wide collection of maize landraces to i) characterize its genetic structuration; ii) identify genomic regions involved in adaptation through environmental association studies; iii) perform genomic prediction (GP) of both adaptive and agronomic traits. Landraces were structured according to their history and environmental conditions. GP yielded high accuracy, allowing to identify promising landraces. We identified genomic regions associated with bioclimatic variables that could be putatively involved in adaptation to abiotic stress. Combining eco-genetic and genomic prediction opens an avenue for using these genetic resources for prebreeding.
No file

Dates and versions

hal-04225415 , version 1 (02-10-2023)

Licence

Identifiers

  • HAL Id : hal-04225415 , version 1

Cite

Agustin O. Galaretto, Brigitte Gouesnard, Delphine Madur, Sarah Ben-Sadoun, Sarah Hearne, et al.. Genomic prediction and landscape genomics in a large maize landraces collection using high-throughput pool genotyping identifies promising sources of diversity for prebreeding. Plant Biology Europe 2023, Jul 2023, Marseille (13), France. ⟨hal-04225415⟩
99 View
0 Download

Share

Gmail Mastodon Facebook X LinkedIn More