TAGADA: a scalable pipeline to improve genome annotations with RNA-seq data - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement
Article Dans Une Revue NAR Genomics and Bioinformatics Année : 2023

TAGADA: a scalable pipeline to improve genome annotations with RNA-seq data

Résumé

Abstract Genome annotation plays a crucial role in providing comprehensive catalog of genes and transcripts for a particular species. As research projects generate new transcriptome data worldwide, integrating this information into existing annotations becomes essential. However, most bioinformatics pipelines are limited in their ability to effectively and consistently update annotations using new RNA-seq data. Here we introduce TAGADA, an RNA-seq pipeline for Transcripts And Genes Assembly, Deconvolution, and Analysis. Given a genomic sequence, a reference annotation and RNA-seq reads, TAGADA enhances existing gene models by generating an improved annotation. It also computes expression values for both the reference and novel annotation, identifies long non-coding transcripts (lncRNAs), and provides a comprehensive quality control report. Developed using Nextflow DSL2, TAGADA offers user-friendly functionalities and ensures reproducibility across different computing platforms through its containerized environment. In this study, we demonstrate the efficacy of TAGADA using RNA-seq data from the GENE-SWiTCH project alongside chicken and pig genome annotations as references. Results indicate that TAGADA can substantially increase the number of annotated transcripts by approximately $300\%$ in these species. Furthermore, we illustrate how TAGADA can integrate Illumina NovaSeq short reads with PacBio Iso-Seq long reads, showcasing its versatility. TAGADA is available at github.com/FAANG/analysis-TAGADA.
Fichier principal
Vignette du fichier
lqad089.pdf (1.1 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Licence

Dates et versions

hal-04278708 , version 1 (10-11-2023)

Licence

Identifiants

Citer

Cyril Kurylo, Cervin Guyomar, Sylvain Foissac, Sarah Djebali. TAGADA: a scalable pipeline to improve genome annotations with RNA-seq data. NAR Genomics and Bioinformatics, 2023, 5 (4), pp.lqad089. ⟨10.1093/nargab/lqad089⟩. ⟨hal-04278708⟩
70 Consultations
25 Téléchargements

Altmetric

Partager

More