Modelling H2 conversion by purple bacteria enriched cultures: evaluating kinetics of gas-fed processes to assess feasibility - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement
Conference Poster Year : 2023

Modelling H2 conversion by purple bacteria enriched cultures: evaluating kinetics of gas-fed processes to assess feasibility

Abstract

Purple phototrophic bacteria (PPB) can be used to convert gaseous streams (e.g., H2 and CO2) into single-cell protein. This work aimed to determine the specific uptake rates of enriched/mixed PPB cultures under different environmental conditions (i.e., temperatures, pH and light intensities), using a mechanistic model considering relevant biological and physico-chemical processes. The model accurately represented results from batch tests with different gas-transfer kinetics (i.e., kLa values), providing similar biological uptakes rates. Optimal rates of 1.9-2.0 g COD•g COD-1 •d-1 were reached at pH 7, 25ºC and light intensities over 30 W•m-2 , with biomass yields of ~1 g COD⸱g-1 COD. The influence of light and temperature on the uptake rates was modelled using the Steele's equation and the cardinal temperature model with inflection. The obtained rates are similar to those for pure PPB cultures and those achieved via photoheterotrophy.
Fichier principal
Vignette du fichier
abstract_ecostp23_model-JPS_GCT.pdf (433.25 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-04466681 , version 1 (19-02-2024)

Identifiers

  • HAL Id : hal-04466681 , version 1

Cite

Gabriel Capson-Tojo, Jean-Philippe Steyer, Nicolas Bernet, María del Rosario Rodero. Modelling H2 conversion by purple bacteria enriched cultures: evaluating kinetics of gas-fed processes to assess feasibility. 6th IWA International Conference on eco-Technologies for Wastewater Treatment, Jun 2023, Girona, Spain. 2023. ⟨hal-04466681⟩
8 View
19 Download

Share

More