Optimal Permutation Estimation in CrowdSourcing problems - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement
Article Dans Une Revue Annals of Statistics Année : 2023

Optimal Permutation Estimation in CrowdSourcing problems

Résumé

Motivated by crowdsourcing applications, we consider a model where we have partial observations from a bivariate isotonic n × d matrix with an unknown permutation π∗ acting on its rows. Focusing on the twin problems of recovering the permutation π∗ and estimating the unknown matrix, we introduce a polynomial-time procedure achieving the minimax risk for these two problems, this for all possible values of n, d, and all possible sampling efforts. Along the way we establish that, in some regimes, recovering the unknown permutation π∗ is considerably simpler than estimating the matrix.

Dates et versions

hal-04488209 , version 1 (04-03-2024)

Identifiants

Citer

Emmanuel Pilliat, Alexandra Carpentier, Nicolas Verzelen. Optimal Permutation Estimation in CrowdSourcing problems. Annals of Statistics, 2023, 51 (3), ⟨10.1214/23-AOS2271⟩. ⟨hal-04488209⟩
13 Consultations
0 Téléchargements

Altmetric

Partager

More