Kalman filter with impulse noised outliers: a robust sequential algorithm to filter data with a large number of outliers - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement Access content directly
Journal Articles The international journal of biostatistics Year : 2024

Kalman filter with impulse noised outliers: a robust sequential algorithm to filter data with a large number of outliers

Abstract

Impulse noised outliers are data points that differ significantly from other observations. They are generally removed from the data set through local regression or the Kalman filter algorithm. However, these methods, or their generalizations, are not well suited when the number of outliers is of the same order as the number of low-noise data (often called nominal measurement ). In this article, we propose a new model for impulsed noise outliers. It is based on a hierarchical model and a simple linear Gaussian process as with the Kalman Filter. We present a fast forward-backward algorithm to filter and smooth sequential data and which also detects these outliers. We compare the robustness and efficiency of this algorithm with classical methods. Finally, we apply this method on a real data set from a Walk Over Weighing system admitting around 60 % of outliers. For this application, we further develop an (explicit) EM algorithm to calibrate some algorithm parameters.

Dates and versions

hal-04563781 , version 1 (30-04-2024)

Identifiers

Cite

Bertrand Cloez, Bénédicte Fontez, Eliel González García, Isabelle Sanchez. Kalman filter with impulse noised outliers: a robust sequential algorithm to filter data with a large number of outliers. The international journal of biostatistics, 2024, ⟨10.1515/ijb-2023-0065⟩. ⟨hal-04563781⟩
0 View
0 Download

Altmetric

Share

Gmail Facebook X LinkedIn More